Problem sheet 1-PHYS6014

1. Assuming that the gold nanoparticles in a solution have spherical shape and uniform fcc crystalline structure. Show that the average number of atoms per gold nanoparticle can be calculated using the following formula:

$$N = \frac{\pi \rho D^3}{6M_w} N_A$$

where: N = number of atoms per nanoparticle ρ = density of face centered cubic (fcc) gold D = average diameter of nanoparticles M_w = molecular weight of gold N_A = number of atoms per mole

2. Assuming that the reduction of Au^{3+} to Au^0 is complete (i.e. all the Au^{3+} in solution is reduced to Au^0), show that the molar nanoparticle concentration, *c*, is given by:

$$c = \frac{N_T}{NVN_A}$$

c = molar concentration of nanoparticle solution N_T = Total number of gold atoms added as HAuCl4 N = number of atoms per nanoparticle V = volume of the reaction solution in L N_A = number of nanoparticles per mole

3. The transmittance, *T*, of light through a liquid is given by Beer-Lambert's Law:

$$T = \frac{I}{I_0} = 10^{-\alpha l} = 10^{-\varepsilon lc}$$

with

 α = absorption coefficient l = distance the light travels through the material (i.e. the path length) ε = molar absorptivity of the absorber c = concentration of absorbing species in the material I_0 = intensity (or power) of the incident light l = intensity (or power) of the transmitted light

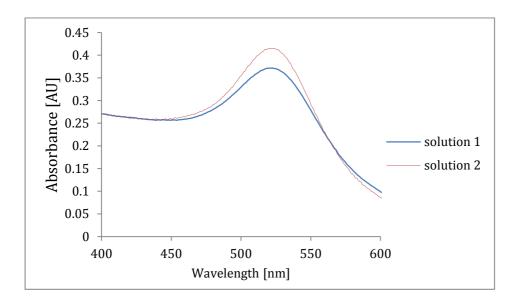
The absorbance, *A*, is defined as:

 $A = -log_{10}(T)$

Using the given equations, show that the absorption at the plasmon peak maximum can be written as:

 $A = \varepsilon lc$

3.1 The UV-visible spectrum of two colloidal gold solutions with same nanoparticle sizes is:



For solution **1** the maximum of absorbance is 0.37 at 522 nm and for solution **2** the maximum is 0.41 at 522 nm.

Estimate the concentration of nanoparticles in solution **2** when the concentration of nanoparticles in solution **1** is 5 nM.

4. Assume a spherical nucleus with a radius of *r*. The total change of the Gibbs energy, ΔG , for the formation of the nucleus, is given by:

$$\Delta G = \frac{4}{3}\pi r^3 \Delta G_{\nu} + 4\pi r^2 \gamma$$

 ΔG = change of Gibbs free energy ΔG_v = change of volume free energy γ = surface energy per unit area

A newly formed nucleus is stable only when its radius exceeds a critical size, r^* . At the critical size, the first derivative of ΔG vanishes:

$$r = r^* \Rightarrow \frac{d\Delta G}{dr} = 0$$

Show that critical size, r^* , and critical energy, ΔG^* , are defined by:

$$r^* = -2\frac{\gamma}{\Delta G_v}$$
$$\Delta G^* = \frac{16\pi\gamma^3}{3\Delta G_v^2}$$

5. The size-dependent energy gap of a spherical semiconductor quantum dot is¹:

$$E_g(d) = E_g(bulk) + \frac{h^2}{2m^*d^2} - 1.8\frac{e^2}{2\pi\varepsilon\varepsilon_0 d}$$

where:

Eg (*d*) = energy gap of a spherical semiconductor quantum dot (in eV) *Eg* (*bulk*) = bulk band gap energy (in eV) *h* = Planck constant (h ≈ 6.6261×10⁻³⁴ Js) *e* = elementary charge (*e* = 1.60217646×10⁻¹⁹ C) *d* = diameter of the nanoparticle (in m) ε = dielectric constant of the semiconductor ε_0 = permittivity constant (ε_0 = 8,854×10⁻¹² $\frac{C^2}{Nm^2}$)

 m^* = the reduced mass of the exciton, given by:

$$\frac{1}{m^*} = \frac{1}{m_e} + \frac{1}{m_h}$$

 m_e = is the effective mass of the electron (in kg) m_h = is the effective mass of the hole (in kg) $eV = 1.602 \times 10^{-19} J$

For CdSe quantum dots, the bulk value for the energy gap is E_g (*bulk*) = 1.74 eV. The effective mass of electrons and holes are $m_e = 0.13 m_0$ and $m_h = 0.40 m_0$, respectively. m_0 is the mass of free electrons ($m_0 = 9.1095 \times 10^{-31}$ kg) and the dielectric constant is $\epsilon_{CdSe} = 5.8$.

Determine the energy gap, Eg(d), for colloidal CdSe quantum dots with diameter d = 3 nm and d = 5 nm and determine which color of the visible spectrum the emitted light has.

¹ Günter Schmid: Nanoparticles: From Theory to Application, p. 22

6. For an ideal surface, the interfacial free energy is given by:

$$\gamma = \frac{1}{2} N_b \varepsilon \rho_a$$

where N_b is the number of broken bonds, ε is the bond strength, and ρ_a is the density of surface atoms.

For an fcc structure with a lattice constant a, the surface energies of the low-index crystallographic facets that typically encase nanocrystals can be estimated as:

$$\gamma_{\{1\ 0\ 0\}} = 4\left(\frac{\varepsilon}{a^2}\right)$$

$$\gamma_{\{1\,1\,0\}} = 3\sqrt{2} \left(\frac{\varepsilon}{a^2}\right)$$

$$\gamma_{\{1\,1\,1\}} = 2\sqrt{3} \left(\frac{\varepsilon}{a^2}\right)$$

Determine the energetic sequence for the surface energies of the low-index crystallographic facets.